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Abstract. The plastic deformation of quasicrystals (QC) is ruled by two types of singularities of the
QC order, singularities of the ‘phonon’ strain field, and singularities of the ‘phason’ strain field. In the
framework of the general topological theory of defects, in which the QC is defined as an irrational subset
of a crystal of higher dimension, both types of defects appear as distinct components of the same entity,
called a disvection [2]. Each of them can also be given a description in terms of more classical concepts,
within a detailed analysis of the Volterra process: it can be shown that (a) the phonon singularity breaks
some symmetry of translation, represented by its Burgers vector b‖ projected from a high dimensional
crystalline lattice onto the physical space; it is therefore akin to a perfect dislocation; (b) the phason
singularities (there are many attached to each b‖-dislocation), that we call matching faults, are dipoles of
dislocations whose Burgers vectors are of a special type; they do break not only a particular symmetry
of translation but also the class of local isomorphism (in the jargon of QCs) of the QC. In fact, such
dipoles, if they open up into loops, bound stacking faults – thus a phason singularity is an imperfect
dislocation. A mismatch is nothing else than an elementary matching fault. It is suggested that it is the
simultaneous presence of perfect dislocations and of phason singularities, and their interplay, that are at
the origin of the peculiar characters of the plastic deformation of quasicrystals, namely the brittle-ductile
transition followed by a stage of work softening; in particular the brittle-ductile transition could be related
to a cooperative transition of the Kosterlitz-Thouless type which affects the dipoles and turn them into
(imperfect) dislocation loops.

PACS. 61.44.Br Quasicrystals – 61.72.Bb Theories and models of crystal defects –
61.72.Nn Stacking faults and other planar or extended defects

1 Introduction

The investigations of the plastic deformation properties
of quasicrystals have been marked in the last decade by
a number of experimental and theoretical advances, but
there are still a number of open questions.

A most intriguing one relates to the nature and role of
phasons and phason defects, and to their interplay with
phonon defects. This question has been attacked by vari-
ous methods (simulations [1], topological classification of
defects [2], phason variables measurements in function of
the deformation [3], etc.). As it is well known, one observes
in QCs the simultaneous presence of two types of strain,
phonon (elastic) strains, as in usual crystals, and phason
strains, which are specific of quasicrystals. As a conse-
quence, one expects specific plastic deformation proper-
ties in QCs. From that point of view, it is difficult to say
that the results do not come up with expectations. For ex-
ample, most QCs show a very remarkable brittle-ductile
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transition (BDT) at a temperature TBDT
∼= 0.7 Tmelt, fol-

lowed above TBDT by a surprising softening behavior, rem-
iniscent of the softening observed in metglasses [4]. These
properties have been dealt with by a number of authors
(for a review, see Urban et al. [3]), but not in the context
of the present work, which bears mostly on the relations
between dislocations and phason defects.

In this paper, the term of dislocations will be restricted
to the singularities of the former type of strain, phonon
strain; dislocations break (quasi)translation symmetries,
as in usual crystals. Matching faults (as we shall venture
to call the phason defects alluded to above) are the sin-
gularities of the latter type of strain, phason strain; we
shall argue that they break, in a sense that will be de-
fined, the class of local isomorphism (LI). This property
is deeply related to the fact that matching faults can also
be considered as (imperfect) dislocation loops or dipoles.
We finally briefly discuss some features of the plastic be-
havior of quasicrystals.

Quasicrystallography theory can be presented in sev-
eral ways: multigrid methods, projections from or in-
tersections of higher space hyperlattices, etc. In the
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Fig. 1. Octagonal symmetry, d = 4. The 2-dimensional
perpendicular plane P⊥ is fully represented (in perspective),
whereas the 2-dimensional physical plane P‖(p) which projects
on P⊥ at a point p, is represented as a line which intersects
the acceptance window AW (p) in its center. AW is the closure
of the projections m⊥ of the hypercubic cells centers whose
attached AS(m) intersect P‖. One of the AS(m)s is schemati-
cally represented. The projections m⊥ fill AW densely.

latter mentioned type of presentation, one starts from a
d-dimensional hyperlattice in a Euclidean space Ed (e.g.,
icosahedral case, d = 6; pentagonal-Penrose-case, d = 5;
octagonal case, d = 4; in all three cases the hyperlattice is
cubic; this is not the only possibility). The physical space
P‖ of the quasicrystal is a d‖-plane in Ed, oriented along
a direction that is irrational with respect to the hyperlat-
tice. This latter condition means that P‖ contains at most
one node of the hypercubic lattice. The flat space Ed in
which the hyperlattice is embedded is the Cartesian prod-
uct Ed = P‖⊗P⊥, where P⊥ is a flat space perpendicular to
P‖; d‖ = d⊥ = d/2 in the icosahedral and octagonal cases.
The atomic positions in the quasicrystal are defined as the
intersections of P‖ with sets of congruent d⊥-dimensional
atomic surfaces (AS) that are attached periodically to the
hypercells (each set, which is globally invariant by the el-
ements of the icosahedral, pentagonal or octagonal group,
corresponding to a fixed Wyckoff position of an atomic
species). Any AS belongs to a local copy of P⊥. For more
details, see e.g., the articles collected by Steinhardt and
Ostlund [5], and for applications to realistic cases, Katz
and Gratias [6].

For the sake of clarity, we shall assume in the following
that the hyperlattice is primitive (thus there is only one set
of ASs), and that each AS is taken equal to the projection
of the hypercubic cell on P⊥ and is attached to each cell
in such a way that the center of the cell m and the center
of the atomic surface AS(m) coincide. Two ASs have no
point in common; they can be brought into coincidence
by a translation b of the hyperlattice. This simple model
has been used by a number of authors; see e.g., [7] for
octagonal (d‖ = 2, d⊥ = 2), Penrose (d‖ = 2, d⊥ = 3), and
icosahedral (d‖ = 3, d⊥ = 3) QCs. Figure 1 illustrates in a
certain manner (see caption) the situation in the octagonal
case.

Fig. 2. Schematic representation of a dislocation in a qua-
sicrystal. Illustration for d⊥ = 1, d‖ = 2; (point dislocation).
(a) The hyperline perpendicular to P‖, i.e., along a copy of P⊥,
has a isotropic core; L = L‖ ⊗ P⊥; (b) The core of a disloca-
tion is necessarily anisotropic or extremely large compared to
atomic dimensions, if L takes any shape.

The grid method will be succinctly presented below for
the 2D Penrose tiling.

2 Dislocations and matching faults:
a reminder

Dislocation hyperlines (hyperdislocations) in Ed are
(d − 2)-dimensional manifolds [8], their Burgers vectors
are lattice constants b = b‖ + b⊥. We restrict to hyper-
lines L that are the Cartesian products of P⊥ by their
intersection L‖ with P‖, namely:

L = L‖ ⊗ P⊥; (1)

L‖ is the physical dislocation line. This decomposition has
two advantages: (a) if L could take any shape, the core
would necessarily be anisotropic and extremely large com-
pared to atomic dimensions [9], see Figure 2; (b) the shape
of the dislocation line does not change under the effect of
a uniform phason displacement [10].

Hyperdislocations are topological defects classified by
the classes of loops of the order parameter space of the
hypercubic crystal, specifically the first homotopy group
π1(Td) = Zd of the d-dimensional torus Td. The physical
image in the QC of an hyperdislocation in Ed consists not
only of the hyperdislocation intersection with P‖, i.e., a
physical dislocation, but also of a cloud of singularities of
the phason variables, namely the matching faults alluded
to above.

Observe that a measurement of the phonon strain
field ∇‖u‖ made along a Burgers circuit surrounding L‖
in P‖ cannot yield anything else than b‖ (=

∫
du‖),

because b⊥ does not belong to the physical space P‖.
Hence L‖ is, in the usual sense, a true dislocation line
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Fig. 3. Flip and mismatches of opposite signs in a PT. The
two mismatches can diffuse apart by a process of consecutive
local shifts: (a) Perfect tiling along a row of ‘hexagons’. (b) Flip
of a node in the central hexagon and appearance of two mis-
matches.

with Burgers vector b‖. The perpendicular component b⊥
shows itself in P⊥ through a displacement field u⊥, which
affects the position of a certain number of atomic surfaces
with respect to P‖, resulting in localized shifts of some
atoms in P‖. The picture of the physical effect of b⊥ that
emerges from the above is somewhat complex, and this
paper is to make it more accessible, hopefully. For this
purpose, we do not use the continuous picture of the pha-
son strain ∇‖u⊥, but its discrete version, which is in terms
of tilings.

In the 2D Penrose tiling (PT), an atomic, localized,
phason strain is represented by the local shift (or flip) of a
node of the tiling, to the effect that two opposite edges of
a large rhombus match wrongly with their neighbors (the
local matching rules are broken along two mismatches),
see Figure 3.

We emphasize that it is necessary, when speaking of
phasons, to clearly distinguish between an atomic flip
and a mismatch: two mismatches belonging to the same
rhombus can move independently along a worm and get
apart [11]. A mismatch is by itself a topological defect, be-
cause it cannot disappear on the spot. On the other hand,
a localized shift, being the sum of two mismatches of oppo-
site signs, can disappear on the spot; a local shift is not a
topological defect, but a (discrete) element of the phason
strain. A mismatch is a singularity of the phason strain
field in the same sense that a dislocation is a singularity
of the phonon strain field.

These mismatches (not the phason strains) are pre-
cisely the most simple defects representing the physical
content of b⊥ [9]. They are elementary matching faults.
But they also have an existence independent of the pres-
ence of a dislocation and can be considered as topological
defects per se. Similarly, a dislocation of Burgers vector b‖
can exist without being escorted by companion matching
faults [12]1. It is possible to attach a topological invariant
to each mismatch, in the same way that it is possible to as-

1 In an electron microscope observation, the two Burgers
components of the hyperdislocation cannot be separated, if

sign an (invariant) Burgers vector b‖ to a dislocation. This
has been shown [13] for mismatches in a PT belonging to
the γ = 0 LI class. We come back later to the notion of LI
class, which is crucial for a full understanding of matching
faults.

A more general approach to the topological theory
of defects in QCs has been proposed [2]. We briefly
mention it on account of a question of terminology. In
the course of the development of the topological theory,
the d⊥-dimensional projection Td⊥ of the d-dimensional
torus Td onto P⊥ does appear. Td is the order parame-
ter space (degeneracy space) of the d-dimensional crystal,
and Td⊥ is the order parameter space of the quasicrystal.
In analogy with the way Td is related to the group of trans-
lations in the d-dimensional flat lattice (which is tiled by
congruent Tds), Td⊥ is related to the (non-commutative)
group of transvections [14] in a d⊥-dimensional curved
lattice (which is tiled by congruent Td⊥s); hence the
name of disvections, in analogy with dislocations. The
group of translations classifies the b-hyperdislocations;
the group of transvections classifies the b‖-dislocations
and the b⊥-phason defects, all together. Because disloca-
tions and phason singularities can be independent defects,
we propose to restrict the use of the term of ‘matching
fault’ to the latter defects (i.e. to the whole set of de-
fects attached to the b⊥ vector), the term of ‘dislocation’
(Burgers vector b‖) keeping its usual meaning. ‘Disvec-
tion’, which gathers both types of defects, is the catchword
for the image in the physical space P‖ of the hyperdislo-
cation L of Burgers vector b in Ed.

3 Matching faults in a Penrose tiling

We discuss now a certain number of physical and struc-
tural properties which show, on one hand, how matching
faults can be described as dislocations dipoles, on the other
hand, how they relate to the concept of class of local iso-
morphism. This section is devoted to 2D Penrose tilings,
for which the above characters of matching faults can be
easily exhibited. The (more difficult) extension to other
cases is discussed in Sections 4 and 5.

3.1 Mismatches, dislocation dipoles

Mismatches are elementary matching faults: along edges
in 2D QCs, along faces in 3D QCs. They can be considered
as imperfect dislocation dipoles. This is illustrated Figure 4
for a 2D PT belonging to the (usual) γ = 0 LI class. The
mismatch sits along L1L2, and is the result of the mutual
annihilation of two disvections at a lattice distance. The
total Burgers vector of each (point) disvection forming the
dipole is b = b‖ + b⊥ = ±[1, 0, 0, 0, 0]. But ±[1, 0, 0, 0, 0]
is not a topologically stable Burgers vector of the PT [15].
In effect, the local configurations along the cut surface of

they both exist; they yield indeed an electronic phase shift
G ·b = g‖ ·b‖ +g⊥ ·b⊥, where g‖ and g⊥ are the components
of the diffraction vector G = g‖ + g⊥.
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Fig. 4. PT: an elementary phason singularity as a dislocation
dipole; d‖ = 2, d⊥ = 3. (a) Cut surface along the polygonal
line L1α, removal of the line-patterned matter, gluing along
L1α−L2β; these operations result in a dislocation +b in L1 and
a stacking fault along L1α. (b) Cut surface along the line L2β,
addition of the line-patterned matter, gluing; these operations
result in the disappearance of the L1α and L2β stacking faults
(which are of opposite signs) and in a dislocation −b in L2.

any of these point disvections, L1α say, are forbidden in
the γ = 0 LI class, and this situation cannot be healed
by simple flips of the phason type, as we shall comment
in more detail in the next subsection. We therefore refer
to the cut surface of the imperfect disvection as a stack-
ing fault. On the other hand a topologically stable perfect
disvection (e.g., b = [1,−1, 0, 0, 0]) breaks the quasicrys-
talline translational symmetries, but does not break the
LI class.

3.2 Classes of isomorphism

By definition, a class of local isomorphism contains a set
of tilings that share the same set of finite subsets. The no-
tion of LI class has been much studied in the first decade
following the discovery of QCs [16,17], but has since lost
somewhat of its aura, probably because it is now believed
that actual QCs of the same dimensionality and same sym-
metry all belong to the same class of isomorphism. The
discussion of the LI class of a PT that follows is made in
the frame of the grid dual method (GDM) developed by
De Bruijn [18] and generalized in [19,20].

(α) The grid dual method. In the De Bruijn grid
method, each mesh of the 2-grid is characterized by 5 in-
tegers ki, each ki increasing by one unit ki → ki + 1 in
the positive direction of the unit vector vi perpendicular
to the i-set of parallel lines forming the mesh, each time
a line of the set is crossed. The vis point along the edges
of a regular pentagon. The PT is the dual of the grid,
with nodes that can be written in complex coordinates
Z =

∑
i(ki − γi)ξi for each mesh, where ξ = exp[2iπ/5].

The γis are arbitrary real numbers which define the origin
of the grid.

The mesh is also the intersection of a 5D hypercubic
lattice in E5 with an irrational plane P‖. The equations of

this plane are

∑
i

(xi − γi) = 0
∑

i

(xi − γi)ξ2i = 0. (2)

The last equation stands for two equations in the field
of real numbers. The order parameter which defines the
LI class is γ =

∑
i γi. Each node of the PT is also the

projection of a lattice node belonging to a hypercube in-
tersecting P‖.

The integer K =
∑

i ki takes only a finite number of
values, 4 values in a true PT, where γ = 0 (mod. 1),
namely γ, γ + 1, γ + 2, γ + 3; K takes one value more
in a generalized PT (γ non integer), namely Int+(γ),
Int+(γ + 1), Int+(γ + 2), Int+(γ + 3), Int+(γ + 4), where
Int+(γ) is the smallest integer which is larger than γ.

(β) perfect and imperfect disvections [15]. Let us con-
sider a disvection of Burgers vector b = {ni}, and intro-
duce the scalar product b · (1, 1, 1, 1, 1) =

∑
i ni, which

is the projection of b on the five-fold axis perpendicular
to P‖. If b · (1, 1, 1, 1, 1) = 0, one can convince oneself
that the total variation of K along a loop surrounding
it vanishes. The introduction of such a disvection does
not modify the number of values taken by K. On the
other hand, a disvection of the type b · (1, 1, 1, 1, 1) = ±1
changes K → K ± 1 when traversing a closed loop; the
number of values taken by K is now 5. After [15], we in-
terpret this modification as follows. As a complete loop
surrounding a disvection of Burgers vector b is traversed,
γi changes to γi + ni. The LI class is modified accord-
ingly: γ → γ +

∑
i ni, where

∑
i ni is also b · (1, 1, 1, 1, 1).

Therefore the LI class takes all the intermediary values be-
tween γ and γ +

∑
i ni when the loop is traversed. There

is no modification of the LI class if
∑

i ni = 0, and the
dislocation does not break the LI class. But it is broken
if

∑
i ni �= 0.

The structural properties of the LI classes for γ �= 0
have been studied by Pavlovitch et al. [21]. They show
that a γ �= 0 PT requires four types of tiles; the usual PT
can be represented with only two types (two rhombi with
a suitable arrowing of their edges), the density of supple-
mentary tiles (the same rhombi, but differently arrowed)
depending on the value of γ. A variable γ in a tiling can
therefore be evidenced by the presence of a variable den-
sity of supplementary tiles whose arrowing fits with the
arrowing of the original tiles, without the appearance of a
discontinuity (a stacking fault) in the arrowing.

Coming back to the dipole of Figure 4, observe that it
is embedded in a γ = 0 PT, but that the order parameter
(the LI class) along the mismatch, which is what remains
of the two stacking faults when they have merged, is dif-
ferent. The dipole is an imperfect disvection dipole. This
is of little consequence as long as the distance between
the two dislocation segments forming the dipole is compa-
rable to the quasilattice parameter (narrow dipole). But
if the dipole opens up into a dislocation loop, continuous
variations of the γ field between 0 and 1 have to show
up along any Burgers circuit surrounding the dislocation.
In the narrow dipole ‘state’ of the dislocation loop, those
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variations are amassed in the core of the mismatch; they
form the mismatch itself.

To summarize, perfect translation defects in a PT,
with

∑
i bi = 0, leave invariant the LI class γ. In all other

cases the notion of defect does subsist, but matching faults
are no longer well defined. In fact, if no interest is taken in
phason defects, the concept of LI class looses interest, and
the Burgers vectors of translation defects can take values
in the full range b = {ni}, ni ∈ Z, i = 1, 2, ..., 5. This is
true in particular if phason flips, mismatches (and match-
ing faults) have negligible energy; in that case the LI class
is no longer a relevant observable.

4 Matching faults as dislocation dipoles

The embedding of PTs in a d = 5 hyperspace is some-
what special, because it is possible to tune the LI classes
by varying the projection of P‖ along the 5-fold axis
(1,1,1,1,1). The grid method, as we have seen, gives a
particularly transparent way of exhibiting the different
LI classes. The icosahedral case (d = 6) and the octag-
onal case (d = 4) do not offer such a possibility: the LI
class is unique, whatever the choice of the position of P‖.
One can therefore wonder whether the same type of re-
sult holds, namely that mismatches, and more generally
matching faults, are imperfect dislocation dipoles.

We show in this section that a phason singularity is
an imperfect dislocation dipole in all QCs, not only PTs,
irrespective of their symmetries and dimensionalities. The
method in use, a detailed geometric study of the Volterra
process (VP) for a disvection b = b⊥ + b‖, will let ap-
pear how b⊥ matching faults are related to the perfect b‖
dislocation.

4.1 Cut surfaces in Ed and in P‖

Let
∑

be the cut surface in Ed of a hyperdislocation L,
Burgers vector b.

∑
intersects P‖ along

∑
‖, which is

the cut surface of L‖, in physical space. Generically,
dim(

∑
) = (d−1), dim(

∑
‖) = (d‖−1). We know that the

result of the VP in a usual crystal – which the hyperlattice
is – does not depend on the choice of the cut surface. Then,
instead of employing an arbitrary

∑
in Ed, which would

yield an arbitrary
∑

‖, let us start from a
∑

‖ chosen on
purpose, and construct a

∑
from such a

∑
‖. It appears

useful in a first step to start from a
∑

‖ that is a glide
surface, namely a cylindrical surface parallel to b‖, L‖ be-
ing a closed line inscribed on the cylinder. The advantage
of this choice, which can be always done without loss of
generality, is that the VP does not require any addition or
removal of matter in physical space, a process that would
be difficult to analyze in a quasicrystal2. We also impose

2 However, let us observe that the analysis of the dipolar
character of a mismatch, made in Section 3.1, uses cut sur-
faces L1α and L2β which are perpendicular to the Burgers
vector b‖. The simplicity of the process results from the follow-

that
∑

‖ contains a high density of atomic sites m‖ of the
QC. Such a condition, this time, restricts the possible L‖s,
but it is expected that this limitation can be healed, af-
ter the VP is completed, by reshaping the loop by glide
and climb (and possibly diffusion for matching faults). We
have not done this analysis.

Let
∑+

‖ and
∑−

‖ be the lips of the cut surface. In the
VP, we shall displace one lip,

∑+
‖ , say, by a vector b rela-

tively to the other, namely
∑−

‖ , which stays fixed. We do
not specify to which lip

∑+
‖ or

∑−
‖ the atomic sites m‖

do belong: rather, when the VP is turned on, we consider
that each atom belonging to

∑
‖ is split into two copies,

one dragged by the movement of
∑+

‖ , the other one stay-
ing in place in

∑−
‖ . When the VP is completed, certain

atoms on
∑+

‖ coincide with atoms on
∑−

‖ ; those atoms
are then identified. This is precisely what one would do in
a classic VP, for a perfect dislocation, in a classic crystal.
But because we are dealing with a QC, other atoms do
not hit an occupied site. This is where the phasons play a
role, as we discuss in some detail.

It would be nice to have a
∑

in Ed with proper-
ties akin to those of

∑
‖, i.e. such that it contains the

Burgers vector b and the hyperlattice centers from which
the atomic sites in the QC are derived, as intersections m‖
of the atomic surfaces AS(m) attached to each hyperlat-
tice center m: m → m‖. To get this result, it is sufficient
to take for

∑
the Cartesian product of

∑
‖ by P⊥,

∑
=

∑
‖ ⊗ P⊥, (3)

in complete analogy with our choice for L = L‖ ⊗ P⊥,
equation (1).

We indicate some properties, independent of the fact
that

∑
‖ is a dense surface of the QC, attached to our

choice for
∑

and
∑

‖:

(i) the copy of P⊥ attached to m‖ belongs to
∑

; it con-
tains AS(m) and m. Hence AS(m) belongs to

∑
;

(ii) since b⊥ and b‖ both belong to
∑

, the full Burgers
vector b belongs to

∑
. The VP does not require re-

moval or addition of matter in the high-dimensional
space. Let us notice, in passing, that such a

∑
is

not generic. But again, the final result in the d-
dimensional space does not depend on the choice
of

∑
;

(iii) because any AS(m) in Ed belongs to a copy of P⊥
(call it P⊥(m)), it is either entirely in

∑
or has no

point in common with
∑

. If a AS(m) has one point in
common with

∑
, it also has a point in common with∑

‖. Observe that AS(m) may belong to a P⊥(m)

ing: a) one considers a dipole, not a unique dislocation, b) the
displacement b‖ is equal to the edge of a tile, and propagates
along a ‘worm’, c) the cut surfaces follow the meandering of
the worm. These characters are specific of a mismatch, not of
a general matching fault.
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Fig. 5. Embedding of the plane P 2(m‖), defined by the direc-
tions 〈b‖〉 and 〈b⊥〉 in Ed and attached to m‖. Illustration for
d = 4, octagonal symmetry; the 2-dimensional physical plane,
which projects on P⊥ in one point, p, is represented as a line
which is taken (in the drawing) along 〈b‖〉.

which intersects
∑

‖, but the intersection is not nec-
essarily a point of AS(m);

(iv) let m‖ be an atomic site on
∑+

‖ ; m belongs to
∑

,
according to (i). The displaced site m′ = m+b is also
in

∑
, since b is in

∑
. But AS(m′), which belongs to∑

, does not necessarily intersect
∑

‖;
(v) consider the set of parallel 2D planes which contain

the two directions 〈b⊥〉 and 〈b‖〉. The notation 〈a〉
designates the infinite line in the direction of a. We
call P 2(m‖) the plane of this set attached to the
atomic site m‖ in the physical space P‖(p), 〈b‖(m‖)〉
the direction attached to m‖, see Figure 5. If m‖ be-
longs to

∑
‖, the vertical lines (along 〈b⊥〉) drawn

from the intersection of 〈b‖(m‖)〉 with the disloca-
tion line L‖ delimitate in P 2(m‖) an infinite strip
that belongs to

∑
.

Observe that, in the P 2(m‖) plane, all the directions
parallel to 〈b‖(m‖)〉 belong to a copy of P‖, all the direc-
tions parallel to 〈b⊥〉 belong to a copy of P⊥. Because P‖
is perpendicular to b⊥, the intersection of P‖ with P 2 is
also the projection of P‖ on P 2, along 〈b‖〉. Similarly, the
intersection of P⊥ with P 2 is also its projection on P 2,
along 〈b⊥〉.

4.2 The Volterra process; true and false sites

We split the VP into two steps: (i) a displacement which,
if first performed, brings any lattice site m‖ belonging
to

∑+
‖ to µ‖ = m‖ + b‖, and (ii) a displacement which

brings µ‖ to m′
‖ = µ‖ +b⊥. We call these elementary VPs

the b‖-step and the b⊥-step. The order in which they are
performed is irrelevant. The site m‖ belongs to P‖; m′

‖
belongs to another realization of the QC, P ′

‖. We discuss
now the geometrical features of the VP in the 2-plane P2,

Fig. 6. Schematic representation of the VP displacement that
affects a site m‖ in

�+
‖ . The sketch is made in the P 2(m‖)

plane. Each AS(m), irrespective of the value of d, d‖, d⊥, in-
tersects P 2 along a line segment AS1(m) whose direction is
parallel to 〈b⊥〉. This intersection is not void if and only if
m⊥ falls inside AW (p). The full atomic surface projects on P 2

along 〈b⊥〉. AS1(m) is represented as a full line; the projection
of the rest of the AS is represented as a line with a narrow hor-
izontal pattern. See also Figure 5. The atom formerly in site
m‖ hits a site µ‖ = m‖ + b‖ which is empty (false site) in the
present figure.

see Figure 6. The sites m‖ and m′
‖ are true QC sites (for

two different QC realizations), and belong to two atomic
surfaces AS(m) and AS(m′), such that m′ = m+b. In Ed,
the VP consists in a displacement m → m′, with a simul-
taneous transport of AS(m) to AS(m′). Now the question
is whether µ‖ is true or false; (if a point in P‖ is not at an
intersection with an atomic surface, we call it false).

If µ‖ is true, its local environments carried by the two
lips (above and below

∑
‖) are in register along

∑
‖, al-

though the full local environment is not necessarily the
same as for m‖. The VP so performed shows no differ-
ence with a usual VP for a perfect dislocation in a peri-
odic crystal, but this resemblance is only local. We have
achieved what can be called a perfect dislocation loop of
Burgers vector b‖; but the size of such a loop scales with
the distance between neighboring atoms. If the same prop-
erty could be repeated – but it cannot – for all the atoms
on

∑+
‖ , the local VPs on the cut surface would generate a

set of contiguous perfect dislocation loops all of the same
Burgers vector; this set, on the whole, would be equiva-
lent to a dislocation along the loop L‖, of the same Burgers
vector.

Figure 6 illustrates the case when µ‖ is false. This is
the case, alluded to above, where the VP does not work as
in a usual crystal. The points of P 2 which are true sites for
atoms in the different realizations of perfect QCs belong to
the intersections of P 2 with all the atomic surfaces AS(m)
attached to all the hyperlattice cell centers m. We call
these intersections AS1(m); they consist in a segment of
straight line.
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Fig. 7. For the indicated b⊥ vector, a site m‖ is true if it
belongs to I (region I is the intersection of AS with an AS
displaced by a b⊥ translation); in region II, the m‖ sites are
false.

Rule: µ‖ (= m + b‖) is true if and only if the vec-
tor b⊥ whose head is taken in m‖ is entirely embedded
in AS1(m), i.e., in AS(m), as it is easy to see. Figure 7
illustrates the octagonal case; the site m‖ is true if it be-
longs to region I, it is false otherwise (region II).

4.3 The extension of the Volterra process for false
sites

We show in this section how the Volterra process has to be
modified when the site is false. The fundamental result is
that one has to replace locally the perfect disvection b by
an imperfect disvection bdisv = b∗

‖ + b‖. The perpendic-
ular component of bdisv vanishes, so that this disvection
reduces to an imperfect dislocation (a matching fault); b∗

‖
is a Burgers vector (in the sense that it is still a projection
of a hyperlattice vector b∗) which depends on m‖ but be-
longs to a restricted set of vectors, which we call flipping
vectors, and which are the vectors that join the centers of
two adjacent hypercells. These flipping vectors relate to
the flips described since long in QCs. They also relate to
the different types of structural modifications of the qua-
sicrystalline arrangements in a matching fault. The rea-
son of a special VP for false sites is of physical origin: the
modified VP preserves the density of atoms. The detailed
demonstration goes as follows.

If µ‖ is false, one immediately notices that, by filling µ‖
with an atom, as a result of VP, increases the local density,
if another atom near-by is not removed. What happens in
this case in the course of the VP can be understood as
follows.

Consider, Figure 8, two atomic surfaces AS(m)
and AS(m∗) which have a common d‖-dimensional tan-
gent plane, parallel to P‖, denoted P (m, m∗) (the so-called
silhouetting tangent plane [7]). We claim that it is this ge-
ometry that is at the origin of the discontinuous flips in a
quasicrystal: if AS(m) is displaced in such a way that it
looses its intersection m‖ with P‖, another AS(m∗) hits P‖
and enters it, at the moment m‖ leaves it (this is how
the number of atoms is preserved). The phenomenon is
illustrated in Figure 8 for the octagonal case: the two hy-
percubes (not drawn), which project on the perpendicular
space along AS⊥(m) and AS⊥(m∗), have a common edge
in Ed (not represented), from which can be drawn physical

Fig. 8. AS(m) and AS(m∗) are tangent along a 1-face (more
generally, a (d⊥−1) face), as well as their projections AS(m⊥)
and AS(m∗

⊥) on P⊥. The ASs are centered in Ed on the
centers m, m∗ of the hypercubes; m and m∗ project on m⊥
and m∗

⊥ on the perpendicular plane. Let m∗ = m + b∗, with
b∗ = b∗

⊥+b∗
‖. Notice that the representation of b∗

⊥ is easy, be-
cause P⊥ is represented with its full dimensionality (although
in perspective); but b∗

‖, which belongs to a P 2(m∗
‖) plane dif-

ferent from P 2(m‖), generically, is not represented. P (m,m∗)
is called a silhouetting tangent plane.

Fig. 9. The Volterra process completed for a site m‖ which
hits a false site µ‖ in the translation µ‖ = m‖ + b‖. Because
of the ‘shift’ which occurs during VP between AS(m) and
AS(m∗), the final transform of m‖ in the process is µ∗

‖. See
text.

planes (copies of P‖) that do not penetrate the two hy-
percubes (since they fall on the common edge of AS⊥(m)
and AS⊥(m∗) in P⊥). The lifts AS(m) and AS(m∗) – the
atomic surfaces – of AS⊥(m) and AS⊥(m∗) in Ed have no
point in common.

Now, when AS(m) moves along 〈b⊥〉, and if
one assumes that AS(m∗) experiences the same mo-
tion, then AS(m∗) enters P‖(p), at the very moment
when AS(m) leaves it: a flip happens, m‖ → m∗

‖, where m∗
‖

is the projection of AS(m∗) onto P‖. This geometry is
most easily represented in the P 2(m‖) plane, Figure 9.
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Note that m∗
‖ does not depend on the magnitude of the

displacement along 〈b⊥〉, but m∗
‖ = m‖ + b∗

‖ is defined
unambiguously.

In the above analysis of the flip, we have made the
assumption that the atomic surfaces AS(m) and AS(m∗)
are both moving. Now we prove that this is indeed the case
in the VP. We select the tangent plane at the extremity
of AS1(m) which is opposite to the face crossed by m‖
during the b⊥-step (we perform the b⊥-step before the
b‖-step). AS(m∗) is then unambiguously determined. We
employ the specific features that we have chosen for the
cut surfaces

∑
and

∑
‖. An essential property of AS(m∗)

is that it does belong to
∑

. In effect, even if m∗
‖ = m‖+b∗

‖
is not in

∑
‖, generically, because b∗

‖ is not generically
in

∑
‖, m∗ belongs to

∑
, because it is at a small, atomic,

distance from m, and its projection on P 2(m‖) is there-
fore inside the strip, defined above Section 4.1, bound by
the intersection of the dislocation L with P 2(m‖). There-
fore AS(m∗) is indeed dragged along with AS(m) when
the VP is progressing, even if the flip m‖ → m∗

‖ does not
belong to VP, stricto sensu. The effect of the b⊥-step is to
replace m‖ by m∗

‖, the effect of the b‖-step is to bring m∗
‖

in the final position µ∗
‖ = m‖ +b∗

‖+b‖. The total Burgers
vector is

bdisv = b∗
‖ + b‖. (4)

Another way to find this result is to notice that the
displacement of AS(m) can be split into two parts, one
which brings it to the former position of AS(m∗), by a
translation b1 = b∗

‖−b⊥, then a second one from this po-
sition to AS(µ∗), by a translation b2 = b = b‖ +b⊥, One
gets b1 + b2 = bdisv. The b1-step can be considered as
a relaxation process that insures that the atomic density
is constant. We have created locally, through a very un-
usual VP, whose physical Burgers vector is b∗

‖ + b‖, whose
perpendicular vector vanishes. Clearly, the total Burgers
vector bdisv is not a valid Burgers vector of the QC. The
dislocation of Burgers vector bdisv is imperfect and carries
a stacking fault. We characterize it more fully in the next
section.

5 Imperfect dislocations in QCS

5.1 Flipping Burgers vectors and pure matching faults

The subset of all Burgers vectors bfl = bfl
‖ + bfl

⊥ which
join the centers of two hypercubes in contact along a sil-
houetting face – we call them flipping Burgers vectors –
yields in physical space disvections of a particular nature
(the b∗ vector in the latter section was a flipping vector).
Before developing this point, we first emphasize the spe-
cial characters of these Burgers vectors.

Flipping Burgers vectors are related to the silhouetting
d‖-dimensional directions introduced in [7]. The term sil-
houetting [7] is self-explanatory; it refers to all the physical
planes P‖ which are tangent to two hypercubic cells which

Fig. 10. The Volterra process for a flipping Burgers vec-
tor; bfl, as seen in the plane P 2(m‖). (a) ASp(m) = AS1(m),
the projection and the intersection of AS(m) with P 2(m‖) are

equal ⇒ b∗ = −bfl; bdisv = 0; (b) AS(m∗) = AS(m) + b∗,
b∗ �= bfl.

have a (d⊥−1)-dimensional face in common, i.e., a 2-face
for the icosahedral QC (d = 6, d⊥ = 3) and the Penrose
tiling (d = 5, d⊥ = 3), a 1-face (an edge) for the octag-
onal QC. In the simplified model of the QC that we are
investigating, if one chooses for all the congruent ASs the
projection of an hypercube onto P⊥, the silhouetting di-
rections of neighboring hypercubes having a (d⊥ − 1)-face
in common shape a right cylinder around each AS, each
generatrix of this cylinder being a P‖. The vector bfl is
precisely the vector that joins the centers of two hyper-
cubes that have a face in common. A complete table of
the bfls for icosahedral and Penrose QCs can be found
in [7].

Consider now a disvection of Burgers vector bfl =
bfl
‖ + bfl

⊥. In the corresponding 2-plane P 2 at m‖, Fig-
ures 10a, b, the projection ASp of any AS has a length
exactly equal to bfl

⊥, but the length of the intersection AS1

depends on the position of p inside AS⊥(m). This is illus-
trated Figure 11 and discussed later on. But first a remark:
it is easy to convince oneself that, whatever the position
of ASp(m) and the length of AS1(m) may be along 〈bf

⊥〉,
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Fig. 11. Different types of flipping vectors in an octagonal
quasicrystal. (a) and (b): The full disvection Burgers vector is
itself a flipping vector: there are three possibilities, one of them
(here type 2 in (b)) yielding null matching faults; (c) Generic
case: there are four types of matching faults for the full dislo-
cation b = b‖ + b⊥.

µfl
‖ is false, except in the limit case when m meets two con-

ditions, (i) AS1(m) = ASp(m), (ii) AS(m) is tangent from
below to the physical plane. But such ms are exceptional.
Consider then the generic case, and call the flipping vec-
tor b∗ (as in the latter section): the construction discussed
in the former section consists in finding an AS(m∗) that
is tangent to P (m, m∗), at a vector distance b∗. We have
two cases, illustrated respectively in Figures 10a and b.

Figure 10a: in the case when ASp = AS1, it is easy
to see that b∗ = −bfl, because the AS(m)s which inter-
sect in this manner P 2(m‖) repeat periodically along the
direction 〈b〉. One then find bdisv = 0; the corresponding
matching fault vanishes.

Figure 10b: in the cut surface
∑

‖ of the same disvec-
tion bfl, there are generically other m‖ atomic sites that
require other flipping vectors b∗ �= −bfl. It is then equa-
tion (4) that must be used. These occurrences are classified
in the next section.

In any case, at least in the frame of the present analysis
that assumes that the cut surface

∑
‖ is dense and parallel

to bfl
‖ , a flipping disvection is entirely made of matching

faults.

5.2 The classification of matching faults

Observe first that the direction 〈b⊥〉 projected on P⊥ has
a fixed point, the projection p of the physical plane on P⊥,
Figures 5 and 11; 〈b⊥〉 is therefore a fixed direction in P⊥,
for a given Burgers vector b. AS(m⊥) moves in P⊥ in such
a way that its center m⊥ remains inside AW (p); the lift
of AS(m⊥) in the corresponding hypercubic cell intersects
the physical plane in m‖. We are interested in those m‖s
that are on the cut surface

∑
‖. The corresponding m⊥s

form in P⊥ a discrete set that can be anywhere in AW (p),

depending on the shape of the cut surface
∑

‖. The loca-
tion of m⊥ in AW (p) tells immediately (1) whether the
corresponding m‖ is true or false in the VP, (2) if m‖ is
false, which face of AS(m‖) is met by 〈b⊥(p)〉 when the
VP is performed, i.e. which flipping vector is to be used.
Figures 11a and b illustrate the situation for a disvection
whose Burgers vector is a flipping vector: there are 3 faces
which can be met (i.e. 3 types of matching faults) in an oc-
tagonal QC. Figure 11c illustrates the generic case; there
are now 4 types of matching faults.

6 Penrose tilings revisited. A unified
viewpoint

It is of course possible to describe the quasicrystallography
of a PT as an irrational embedding of a d‖ = 2 physical
plane in a 4D crystal, i.e. with d‖ = d⊥ = d/2, in analogy
with the icosahedral case and the octagonal case discussed
above. But, also in analogy, there is only one LI class made
visible. Notice however, as a special property of the PT
case, that the hyperlattice is no longer cubic, but rhombo-
hedral [22], which makes the geometrical representation a
little bit more tricky; this is the reason why the d = 5 em-
bedding is preferred. As shown in [7], there are 10 flipping
vectors in d = 5, but it is easy to see that they project in
the d = 4 subspace P‖⊗P⊥ along 5 flipping vectors which
are precisely along the projections of the 5 directions of
the type {1,0,0,0,0}. The discussion of the matching faults
of the PT in the d = 4 embedding then goes like the dis-
cussion of the matching faults of the icosahedral (d = 6)
and the octagonal (d = 4) QCs.

Reciprocally, one can embed the icosahedral and the
octagonal QCs, and indeed any QC, in a crystal of arbi-
trary dimension. This process would possibly visualize a
wide range of LI classes, and also multiply the number of
possible flipping vectors, i.e. the number of possible struc-
tures of mismatches (and of their corresponding matching
faults). Now all such structures do not have the same free
energy. This situation is reminiscent of what can be said
of stacking faults in close-packed crystals. Consider, e.g.,
a fcc stacking ...CABCABCABC... A typical fault in the
stacking, ...CABABCABC..., say, – resulting from a par-
tial shift that we note bfl

‖ – is such that the long distance
interactions are modified with respect to the ground state,
but preserves close-packing, so that the energy penalty is
small. But a partial shift that does not preserve close-
packing has a large energy, and is thus forbidden, or of
a very small probability, at least. Similarly, one expects
that the only mismatches which survive in a QC are those
which do not deviate from a QC local symmetry. The stan-
dard embedding of a PT in a 5D crystal respects 5-fold
symmetry; this is precisely why the number of flipping vec-
tors effective for mismatches is 5, not 10. Any other em-
bedding would yield high energy mismatches. Remarks of
the same nature can be made for other QCs. The 12D em-
bedding proposed in [19] preserves icosahedral symmetry

and yields
(

d
d⊥ − 1

)
=

(
12
8

)
= 15 × 33 flipping vectors,

but there are only 15 effective flipping vectors in 6D.
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7 Conclusion. Plastic deformation properties
related to matching faults

The above discussion is essentially geometrical and struc-
tural. An important conclusion is that phason singular-
ities in quasicrystals are of the same nature than stack-
ing faults, and that these stacking faults are classified the
same way the mismatches are, i.e., by a special set of
vectors, already considered in [7] as silhouetting vectors,
but which also are flipping vectors, as we have shown.
Because of these especial characters, we prefer to give to
these stacking faults the name of matching faults. Match-
ing faults are companion defects to dislocations, in a way
that is not fully discussed in this article. The relation be-
tween dislocations and matching faults is an essential fea-
ture of QCs: it is a geometrical relation, symbolized by the
unique Burgers vector b which links b‖ and b⊥ – in that
sense the name of disvection finds a justification –; it is
also a physical relation, because the companion matching
faults of a dislocation are relaxation features of the stress
field of the dislocation. This article is indeed restricted
to the case where the cut surface of the b‖-dislocation
is a dense glide manifold, which implies special disloca-
tion loops; this suffices to study the general nature of the
matching faults, but certainly not to understand the role
of the interplay between dislocations of any shape and
matching faults. Observe that the shape of the hyperdis-
location in Ed is a priori enough to determine the phason
singularities belonging to the related disvection, because,
the hyperdislocation being a perfect dislocation, its defor-
mation field does not depend on the precise cut surface at-
tached to it (as long as one can affect a unique elasticity to
the objects in Ed, from the knowledge of the elastic moduli
in the physical space). Observe also that, because the en-
ergy of matching faults depend crucially on the nature of
the faults, (classified by the flipping vectors), one should
also expect that the shape of the dislocation in physical
space depends self-consistently on the matching faults at-
tached to it, so that dislocations of special types might
be favored. These are problems for future investigations,
which should then be devoted to the questions, among
others, related to the deformation of a dislocation loop in
physical space, namely the questions of glide, climb, and
diffusion of matching faults.

We want now to end this article with a few simple, very
speculative, remarks, related to the role of disvections in
the plasticity of quasicrystals.

QCs under deformation show the following characters:
(a) they all exhibit a remarkable brittle-ductile transi-

tion at TBDT
∼= 0.7 Tmelt, i.e., dislocations are not mobile

below TBDT, at least under small stresses3. Quasicrystals
are brittle at low temperature (T < TBDT).

The BDT is a phenomenon common to most materials.
Various theories have been advanced, either relying on the
existence of thermally activated phenomena (thermally ac-
tivated generation of individual dislocations, or thermally

3 But note that experiments carried on AlCuFe have revealed
that dislocations are mobile under a high hydrostatic pres-
sure [23].

activated mobility of interacting dislocations) or on the
effect of thermal fluctuations acting cooperatively on dis-
location dipoles, which suffer a growth and multiplication
instability at some temperature depending on the elastic
constants and the applied stress, after the manner of a
Kosterlitz-Thouless (KT) transition [24].

The TBDT in QCs does not depend significantly on
the predeformation imposed to the specimen, according to
Giacometti et al. [25]. This points toward the importance
of matching faults as leading actors at the transition. They
are frozen at low temperature. We speculate that they
suddenly multiply, by some cooperative effect similar to
that one advanced in [24] for dislocation dipoles in usual
crystals. In that sense the dipolar character of matching
faults has some importance. This is the first issue that
seems worth considering in the light of the present theory.

(b) The brittle domain: the dislocations do not move
(this would be by glide, as one may expect at low temper-
ature), because their motion has to oppose a considerable
Peierls stress, which comprehends the lattice friction and
the nucleation of phason defects, cf. a 1D calculation of
the Peierls stress in [26]. Observe that there is no geomet-
rical reason why phason defects should move if the elastic
coupling between the phonon and phason terms vanish
in the elastic free energy density. This is an assumption
which has often been made, but which is probably too
simplistic.

(c) Stage of work hardening: The nucleation of match-
ing faults in the wake of moving dislocations is probably
difficult. It is interesting to notice that there is a stage
of work hardening at the beginning of the stress-strain
curve, in the ductile domain; which can be interpreted as
a multiplication of dislocations above the BDT, a multi-
plication that is made easier by the presence of a number
of phason defects which have nucleated cooperatively and
haven’t then created a large phason strain.

(d) Above this work hardening stage, we speculate that
the phason strain increases when the dislocations nucleate
under deformation, in what we believe is a second step af-
ter the KT nucleation of phason defects. Guyot et al. [27]
claim that it explains the considerable work softening, at-
tended by a strong increase of the dislocation density with
temperature and with applied (phonon) strain. This in-
crease of the dislocation density has been analyzed by the
Jülich group [3] as relating to a considerable increase of
the density of dislocations with tiny physical Burgers vec-
tors b‖. Correlatively, the phasonic part of the Burgers
vectors b⊥ increases, i.e., the density of phason defects
increases (the authors measure the phason strain). The
multiplication of phason loops might be at the origin of
the multiplication of imperfect dislocations that originate
in the opening up of the matching faults.

Other questions have been considered, in various
works, which should be revisited in the light of the
exact nature of the matching faults attending a given
dislocation. Among them is the question of the split-
ting of the core, which is favored as soon as the nucle-
ation of matching faults is easy, because the phason con-
tent (proportional to |b⊥|) increases when b‖ decreases.
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Reciprocally, if there are already many matching faults,
not attached to specific dislocations, this may provoke dis-
location splitting.

The usual model to explain work softening is that the
dislocations move (by glide, by climb?) in the wake of each
other. This motion requires the nucleation/absorption of
fresh phason defects. Wherever such phason defects exist,
the same effect of easy motion should prevail.
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